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We present Monte Carlo experiments on nucleation theory in the nearest- 
neighbor three-dimensional Ising model and in Ising models with long-range 
interactions. For the nearest-neighbor model, our results are compatible with the 
classical nucleation theory (CNT) for low temperatures, while for the long- 
range model a breakdown of the CNT was observed near the mean-field 
spinodal. A new droplet model and a zeroth-order theory of droplet growth are 
also presented. 
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1. I N T R O D U C T I O N  

For  sys tems which exhibit  a f irst-order phase t rans i t ion,  e.g., water,  the Is ing 
model  or a latt ice gas one dis t inguishes  three types of  regions:  The region 
outside the coexis tence curve,  which is absolu te ly  stable,  the sp inodal  region,  

which is abso lu t ley  unstable ,  and  a region between these two, which  is 
metastable .  In  m e a n  field theories such as the van  der  Waa l s  theory  for fluid 
systems,  or the Pierre Weiss  theory  of  fe r romagnet i sm,  the metas tab le  and  

uns tab le  region are separated by  a sharp b o u n da ry ,  the spinodal .  However ,  
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thus far no evidence for the existence of such a sharp boundary has been 
found, and also classical nucleation theory (~'2) does not predict a well- 
defined spinodal. Instead, experimental data have been interpreted in terms of 
pseudospinodals. (3) Such pseudospinodals are obtained by extrapolations, 
but this does not constitute evidence for an actual spinodal. ~4) It is now 
believed ~ that there is no sharp boundary between the unstable and 
metastable region. Rather, a "fuzzy" region separates them where there is a 
gradual transition from nucleation to spinodal decomposition. 

Here we present Monte Carlo simulations of the metastable states of 
three-dimensional Ising models with short-range interactions, i.e., the usual 
nearest-neighbor model, and with long-range interactions. In all the models 
the order parameter is not conserved (Glauber dynamics). In particular, we 
address the question of the existence of a spinodal and investigate how far 
nucleation theory can describe the metastable states. 

The outline of this paper is as follows. In Section 2 some aspects of the 
classical nucleation theory of Becker and D6ring are briefly reviewed. The 
results of Monte Carlo calculations on the droplet distribution, nucleation 
rate, and droplet for the nearest-neighbor three-dimensional Ising model are 
presented in Section 3. Section 4 is devoted to Monte Carlo studies of the 
metastable states in Ising models with long-range interactions. A new droplet 
model which predicts a percolation transition at the mean field spinodal is 
presented in Section 5, and in Section 6 growth of noncompact droplets is 
studied. 

2. CLASSICAL NUCLEATION THEORY 

To set the stage for the Monte Carlo calculations we briefly review 
some aspects of the classical nucleation theory of Becker and D6ring ~':~ (for 
detailed reviews see J. D. Gunton et al. ~5) or Zettlemoyer~6)). 

Let n s be the average number of droplets of size s, Rs the rate of 
condensation of monomers for droplets of size s, and R~ the evaporation 
rate. The rate Js per unit volume at which droplets of size s grow to droplets 
of size s + 1 is given by 

J s = R s n , - R ~ s + l n s +  1 (2.1) 

and we can write the continuity equation 

~n~(t)/~t --= Js-1 - J~, s >I 2 (2.2) 

and thus obtain for the stationary state 

J =- Jl = J2 . . . .  (2.3) 
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a nucleation rate independent of the droplet size s. Assuming (i) that the 
number of droplets of size s is related to the formation free energy Fs by 

and (ii) that 

n s oc exp(--Fs/k ~ T) (2.4) 

F~/ k~ T =  Fs 2/3 - hs (2.5) 

one obtains the nucleation rate 

J oc n* oc exp ( -4F3 /27h  2) (2,6) 

h is the applied field [h = 2 (magnetic dipole moment) (magnetic field)/k B T] 
and measures the distance to the coexistence curve ( h -  0). For vapor-to- 
liquid nucleation one would use the chemical potential instead of the 
magnetic field. 

The critical nucleus, s*, is the droplet size where the free energy Fs/k B T 
has a maximum. The maximum of Fs constitutes an activation energy 
barrier. Droplets below the critical size will tend to shrink. Droplets larger 
than the critical size will predominately grow, decreasing the free energy and 
leading the system out of a metastable state to a stable equilibrium state. 

Equation (2.4) is, however, only exact in the limit J--* 0 and h ~ 0. For 
nonzero field and nucleation rate Eq. (2.4) is an approximation. 

In (ii) the droplets are assumed to be compact and spherical in contrast 
to a ramified structure. The first term is the surface free energy with F 
related to the bulk surface tension a associated with the interface between the 
up and the down spins by F =  (36n)l /3a/kBT.  a is taken to be a constant, 
equal to the tension of a flat interface and independent of the quenching 
parameter. As has been pointed out, (7) such a procedure is only valid in the 
limit h ~ 0, i.e., close to the coexistence curve. The second term is the 
contribution from the bulk free energy, i.e., the energy required to flip s 
spins. 

3. NUCLEATION IN THE N E A R E S T - N E I G H B O R  
T H R E E - D I M E N S I O N A L  IS ING M O D E L  

In two dimensions, computer simulations (4'8'9) close to the critical point 
confirmed the general concept of nucleation theory as described in the 
previous section. Simulations of three-dimensional systems ~1 o, 11) 
concentrated on the growth of droplets after nucleation or did not measure 
the nucleation rate quantitatively. Here we want to report on Monte Carlo 
simulations of the droplet size distribution, the nucleation rate, and the 
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growth of droplets in the three-dimensional nearest-neighbor Ising model (see 
Appendix A for the method). 

Nucleation theory for Ising models requires a definition or model of a 
droplet. These droplets do not necessarily represent "physical droplets". (8) 
We assume in the following discussions that the droplets (the term "cluster" 
will be used synonymously with droplet) are formed by the "up" spins in a 
sea of "down" spins. In our simulations we have used two droplet models, 
the usual Ising droplets and modified droplets(lZ): 

Definition 3.1: Ising Droplets. Two "up" spins belong to the same 
droplet if they are nearest neighbors. 

Definition 3.2:  Modified Droplets. Two "up" spins belong to the 
same droplet if they are nearest neighbors and if there is a bond present 
between these two spins. 

Bonds between nearest-neighbor "up" spins are present with a 
probability 

P~ = 1 -- exp( -2J /k  B 7") (3.1) 

where J is the exchange energy, k B the Boltzmann constant, and T the tem- 
perature. 

While bonds between nearest-neighbor "up" spins are always present in 
the Ising droplet picture, they are diluted with a probability PB in the 
modified droplet picture. This has the effect of either reducing the size or 
breaking up the Ising droplets into smaller ones. 

From the work of M/iller-Krumbhaar ~3) it is known that the Ising 
droplets undergo a percolation transition on the coexistence line at a 
temperature T I T  c = 0.96. The modified droplet model, on the other hand, 
predicts percolation to occur at the critical temperature To. At T~ we have 

PB = 0.358 (3.2) 

which was shown to be in good agreement with computer simulations. (14) In 
addition they satisfy the conditions 

1. that their linear dimension, i.e., the connectedness length, diverges 
as the Ising correlation length, and 

2. the mean cluster size diverges with the susceptibility.(15'16) 

These conditions are necessary for a proper droplet model. In Section 5 we 
present an extension of the modified droplet definition which predicts the 
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percolation transition to coincide with the mean field spinodal and reduces to 
the definition given above at the critical temperature. 

Three temperatures were selected for our studies, T I T s = 0 . 5 9  

( J / k ~ T =  3/8), 0.86, and 0.96. Part of the results for T I T  c = 0.59, which was 
also used by Kalos e t  al.  ~al) have been reported in a previous paper (17) and 
will be given here in more detail. At T I T  c -~ 0.96 the Ising droplet picture is 
expected to break down due to the percolation transition. 

3.1.  Droplet Distribution 

In the limit of large droplets with size s much smaller than the critical 
size s* we expect from classical nucleation theory a distribution [see 
Eq. (2.4)] 

n~ oz exp(hs - -  Fs 2/3) (3.1.1) 

Taking the logarithm, we get 

In n s - h s  = - l " s  2/3 + a (3.1.2) 

where a comprises the proportionality factor in (3.1.1). Classically a is taken 
to be the number density of monomers. In a semilogarithmic plot we 
therefore should get a straight line for our Monte Carlo data of the droplet 
size distribution. Figures l a - l c  show the results for various quench depths 
for the temperature T / T c = 0 . 5 9  using the Ising droplet definition, and 
Fig. ld using the modified droplet definition. We see that indeed a straight 
line can be fitted to our data for large droplets in both cases. Only the small 
droplets do not obey the relation predicted by Eq. (3.1.1), which is not 
surprising since the assumption of a compact droplet is not expected to hold 
for small droplets. For such small "droplets," consisting of 10 or less 
monomers, Kalos et  al .  (~1) and Marro and Toral (l~a) found empirical 
formulas for these clusters. The deviation for the field h = 0.6 can be 
explained quantitatively by the difference between equilibrium and stationary 
state. 

For the temperature T I T  c = 0.86 (cf. Figs. 2a and 2b) our results are 
similar to those described above. 

On the coexistence curve the Ising droplets undergo a percolation tran- 
sition at T / T c  = 0.96. There the droplet distribution is expected to be 

n s ~ s -~  (3.1.3) 

From our Monte Carlo data we find (see Fig. 3) the exponent r bo be 

r = 2.16 (3.1.4) 
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Fig. 1. Variation of the surface part of the droplet formation energy f s [hs - ln(n~)] with 
the droplet surface s 2/3, (a-c) using the Ising droplets and (d) using the modified droplet 
definition. The temperature was T / T c =  0.59. The large droplets obey approximately the 
prediction of the classical nucleation theory. The resulting surface tension seems to be 
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classical nucleation theory. The resulting surface tension seems to be independent of the 
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droplets of size s as a function of s using \ lsing droplets for the temperature 
T/Te=0.96 with zero applied field. The 
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reported in the literature for the percolation 10 2 S 
threshold. 

which is consistent with the values given in the literature ( r =  2.19, 
Stauffer, ~ls) Reeve~19)). For  comparison we have made in Fig. 4 the same 
plot as for the temperatures T I T  c = 0.59 and 0.86. 

The parallel lines in Figs. i, 2, and 4 suggest that the surface tension is 
independent of  the applied field h for both Ising and modified droplets as 
assumed in the classical nucleation theory (see also Fig. 5, where the critical 
droplet size s* obtained from the simulations is plotted versus l /h3) .  

However, it should be noted that the applied fields are still close to the coex- 
istence curve compared to the mean field spinodal field (h = 1.43). Table 1 
comprises the surface tensions obtained by our Monte Carlo calculations and 
from different sources. 

/'sphere and ]'cube are obtained from F s, the formation free energy, by 
assuming spherical or cubical shapes for the droplets. At  T I T  c = 0.59 the 
surface tension of  both Ising and modified droplets are compatible with the 
surface tension for a sphere obtained by series expansions and Monte Carlo 
simulations, and at the higher temperature the surface tensions for the Ising 
droplets agree with those of/'sphere" But due to the limited droplet size in our 
simulations, our data at T I T  c = 0.96 are not accurate enough to determine 
reliably the surface tension of  Ising and modified droplets. The Ising droplets 
are consistent with both n s oc s -T (Fig. 3) and In n~ oc s -~/3 (Fig. 4a). In the 
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Table I 

T/ Tc Fs Fsph~ 1"~ube 

0.59 0.574 a 2.78 3.44 
0.86 0.112 b 0.54 0.67 
0.96 0.016 b 0.079 0.096 

0.02 c 0.099 O. 120 

Monte Carlo data 

Ising Modified 

T/Tc U 1" U I ~ 

0.59 3.0 + 0.1 2.91 • 0.1 2.85 + 0.1 2.5 • 0. i 
0.86 0.59 - -  0.72 5:0.09 0.997 • 0.08 
0.96 0.085 - -  0.275 • 0.08 - -  

o From series expansionJ TM 

b K. Binder, Phys. Rev. A 25:1699 (1982). 
c From E. Burgner and D. Stauffer, Z. Phys., to be published. 
a From ln(ns) -- hs = a - Fs 2/3. 
e From ln(ns) = a -- (4/27)F3h 2. 

latter interpretat ion the droplet  surface tension agrees numerical ly  with the 
bulk surface tension. ~2~ 

3 .2 .  Nuc lea t ion  Rate  

We saw in Section 1 that  the exper imental ly  impor tant  nucleat ion rate 
J, i.e., how many  droplets  overcome the nucleat ion barr ier  at the cri t ical  size 
s*, is predicted by the classical  nucleat ion theory to be 

J oc n *  oc e x p ( - - 4 F 3 / 2 7 h  2) (3.2.1) 

It should be noted that  the nucleat ion rate was derived under the 
assumpt ion of  a s teady state. In our s imulat ions we could see this s teady 
state and also the t ime lag until the s teady state is achieved. 

The compar ison  of  the observed nucleat ion rates in the Ising model  with 
the rate predicted by the c lass ica l  nucleat ion theory is facil i tated by the 
precise knowledge of  the locat ion of  the coexistence curve. No error in the 
supersaturat ion,  which would lead to fal lacious predictions,  is introduced,  
e.g., by an inaccurate ly  known chemical  potential  on the coexistence curve. 

The nucleation rate J determined by directly counting the number  of  
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droplets overcoming the nucleation barrier, and determined from n* for the 
temperature T / T c = 0 . 5 9 ,  is shown in Fig. 6. The straight line is the 
prediction from Eq. (3.2.1) where the classical prefactor was used and the 
surface tension was taken to be =3.1  (cf. Table 1). For small nucleation 
rates (small applied field) the data, however, indicate some curvature and are 
probably not just statistical fluctuations or finite size effects. Kehr and 
Binder (24) interpreted these deviations as being due to the transition from 
spherical to cubical droplet shape when the droplet size increases due to a 
decreasing field. 

Deviation from the expected behavior of the nucleation rate was also 
found for the temperature T I T  e = 0.86 (cf. Fig. 7). The nucleation rate shows 
a curvature and not the expected linear behavior. 

10 s 
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J 
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Z+ 5 

Fig. 6. Nucleation rate plotted logarithmically versus I/h ~ for the temperature TIT c = 0.59. 
The solid line is the prediction from the classical nucleation theory with the surface tension 
a/k nT taken from series expansions (Ref. 22). The crosses give the number n* of critical 
nuclei, as found by our simulations. The dots give the observed nucleation rate. 
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Fig. 7. Nucleation rate as determined by the number of droplets of  critical size s*  versus 
1/h 2 for the temperature T I T  c = 0.86. 

3.3. Growth of Droplets 

Finally, let us look at the growth of droplets. According to classical 
nucleation theory, the growth of droplets after nucleation is governed by the 
difference of two terms: the incorporation rate and the evaporation rate of 
monomers, i.e., spins. This approximation should be valid, however, only in 
the early stages of the growth when the average supersaturation does not 
change appreciably and for low supersaturations. In the late stages of growth 
coagulation becomes important due to excluded volume effects. 

One takes the incorporation rate and the evaporation rate proportional 
to the surface area of the droplet, i.e., to s 2/3. Then the droplet radius, for 
large s, increases linearly with time. Assuming further that dFs/ds varies as 
s-1/3 for large s, we obtain 

(d/dt)s i/3 = constl _ const2 s -  1/3 (3.3.1) 

Figure 8 shows a typical growth process at TIT  c =0.59 and a field 
h =0.45.  After overcoming the nucleation barrier, the droplet grows 
monotonically and eventually the droplet radius increases linearly with time. 
In Fig. 8b this growth process is shown for a temperature TIT  c = 0.86 and 
h = 0.06. In both cases the modified droplet definition was used. Runs with 
the Ising definition gave almost the same result. 

The above result [Eq. (3.3.1)] was derived under the assumption of a 
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compact droplet. In the case of noncompact droplets we expect a different 
growth law. A zeroth-order theory for this case will be presented in 
Section 6. 

4. NUCLEATION IN LONG-RANGE THREE-DIMENSIONAL 
ISlNG MODELS 

Despite the deviation for small nucleation rates the classical nucleation 
theory seems to work quite satisfactorily in Ising models with short-range 
interaction at low temperatures and for quenches not too deep into the 
metastable region. Deep quenches are not possible since no metastable 
equilibrium can be established. Here we investigate nucleation in Ising 
models with long-range interactions at low temperatures. 

In our Monte Carlo simulations (see Appendix A for the method), we 
used a model proposed by Domb and Dalton, (25) the equivalent-neighbor 
model. This model bridges short-range interactions, i.e., the usual nearest- 
neighbor model and infinite-range interactions. It is assumed that each spin i 
in a simple cubic lattice interacts with q neighbors with equal interaction 
energy J. The spin i does not interact with spins outside the range R. The 
interaction strength in the Monte Carlo calculations of the metastable states 
of this model was K = J / k B T =  (9/4)(1/q). For q =  6, i.e., the nearest- 
neighbor Ising model K reduces to the value used in the calculations in 
Section 3. The system size was 323 with periodic boundary conditions. 
Within the limit of accuracy we could not detect finite size effects by using 
systems of size 243 and 483 . 

A consequence of mean field theory is the existence of a spinodal which 
separates the metastable from the spinodal region. This spinodal is defined 
by the locus of the points where 

2:-- (1 - m 2 ) / [ 1  - Tire(1 -m2)]  (4.1) 

diverges. The susceptibility calculated from the classical nucleation theory 

s* 

X oc ~ s 2 exp(hs - Fs z/3) (4.2) 
s = l  

however, does not diverge. The critical droplet size 

s* = (2F/3h) 3 (4.3) 

remains finite! The results of the Monte Carlo simulations for the suscep- 
tibility (calculated by the fluctuations in the order parameter 
X oc (m 2) - ( m )  z) for the nearest-neighbor model are shown in Fig. 9. The 
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Fig. 9. Inverse susceptibility as a function of the applied field for TIT  c = 0.59 in the case of 
nearest-neighbor interactions. The solid curve is the prediction from the classical nucleation 
theory and the dashed line is the mean field prediction. The dots give the observed surface 
tension. 

solid curve is the prediction of the classical nucleation theory, i.e., Eq. (4.2), 
where we have used F = 3 (see Table 1) and fitted the curve with the propor- 
tionality factor as the only free parameter on our susceptibility data. As 
expected from the results of Section 3 the agreement between classical 
nucleation theory and our data is quite good, but the data do not reach deep 
enough into the metastable region to indicate the existence of a spinodal or a 
bend over as suggested by the classical nucleation theory. The nearest- 
neighbor Ising model becomes unstable for deep quenches. No metastable 
equilibrium could be established due to the strong relaxation of the 
magnetization. Such a strong relaxation was also found for the two- 
dimensional nearest-neighbor Ising model ~4) for deep quenches. 

Let us now turn to long-range interactions (26) (see Fig. 10). The solid 
line represents the mean-field prediction for the inverse susceptibility from 
Eq. (4.1). The broken curve is the prediction of the classical nucleation 
theory for the temperature T I T  o = 4/9. The two free parameters, F and the 
proportionality factor were fitted near the coexistence curve. Fits were also 
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Fig. 10. Inverse suscept ib i l i ty  as a func t ion  o f  the appl ied  field. The full curve  is the m e a n -  

field p red ic t ion  for  T I T  c = 4 /9 .  The  sp inoda l  is p red ic ted  a t  h s = 1.43. The  b r o k e n  curve  is a 

fit o f  the c lass ica l  nuc l ea t i on  t h e o r y  to the mean  field predic t ion .  

made deeper into the metastable region, which gave almost identical results. 
Surprisingly, the classical droplet model fits over a wide range. But near the 
mean-field spinodal, the classical nucleation theory breaks down as can be 
seen by the Monte Carlo results for q = 342. The data follows the mean-field 
prediction and do not bend over. The figure makes clear that the 
pseudospinodals converge very rapidly to the mean-field spinodal. 

5. A NEW DROPLET MODEL 

In Section 3 we used two droplet models, the Ising droplets and the 
modified droplets (see Definitions 3.1 and 3.2). Here we want to extend the 
definition of the modified droplets in such a way that the droplets diverge at 
the mean-field spinodal. The droplets used in nucleation theory of Becker 
and D6ring do not have this property. Their radii stay finite at the spinodal. 
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But the droplets in the Cahn-Hilliard (7) theory of nucleation diverge at the 
mean-field spinodal. 

It is clear that for long-range interaction the Ising droplets made of 
"up" spins pairwise within the range of interaction will exhibit a percolation 
transition on the coexistence curve at a temperature Tp well below the 
critical temperature. As the range of interaction goes to infinity T v --* O. How 
does one define a suitable droplet for very large-range interaction? We 
propose a modified droplet model in the following way: Two "up" spins 
belong to the same droplet if they are within the interaction range of each 
other and if there is a bond present between them. Bonds between interacting 
spins are active with a probability 

Pn = 1 -- e x p [ - - 4 J / k  B T(1 - p)] (5. l)  

p = (1 + m ) / 2  being the density. 
We have calculated in the limit of infinite range interaction the mean 

droplet size s = ~ sZns and found that 

g = 4 ( 1 - p ) =  [ 1 - 4 ( J / k B T ) q p ( 1 - p ) ] - '  (5.2) 

where Z is the susceptibility of the Ising model in the mean field approx- 
imation and q is the number of neighbors with which a given spin interacts. 
In this limit q -  oo and J ~  0 such that Jq remains finite. From Eq. (5.2) 
follows that the mean droplet size diverges along the mean field spinodal, 
i.e., where Z diverges. 

We have also calculated the droplet distribution n s 

1 1 - s / z  
s exp[-s(J.p -- 1 + lnp)] (5.3) ns = (2zr)l/~ 2 

where ~ = Jq. Note that there is only one term proportional to s which 
vanishes at the spinodal. In computer simulations (2v) we have evaluated the 
droplet size distribution and the mean droplet size for q = 124 and found 
good agreement with Eqs. (5.2) and (5.3) (cf. Fig. 11). 

We briefly sketch the derivation of Eqs. (5.2) and (5.3). It is known that 
mean field results for the Ising model can be obtained by solving the model 
on the Bethe lattice with coordination number q and then taking the limit 
q ~ 00. (28) Using the general result developed for the site correlated random 
bond percolation on the Bethe lattice (29) with coordination number q, we 
have calculated in the limit q ~ oo, for a bond probability given by (5ol) the 
density of "up" spins in the infinite droplet 

P = 1 -- e x p [ 4 P ( J / k ,  T (  qp(1 - p)  -- h] (5.4) 
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Fig, 11. Droplet size distribution n, as a function of s for various magnetic fields. The solid 
lines are the predictions of Eq. (5.3). The inset gives the prediction for the mean droplet size 
as a function of the magnetic field (solid curve) and the data obtained by Monte Carlo 
simulations. 

where h is a ghost field. The derivative with respect to h of  P for h = 0 is 
related to the mean droplet size ~ =  ( 1 - - P ) - l @ P / O h ) h = o ,  which leads to 
Eq. (5.2). Similarly we also obtain Eq. (5.3). It has also been shown ~3~ that 
a field theory representation of  the spinodal can be mapped onto the field 
theory of  the correlated site bond percolation model ~31) and the results are 
consistent with those presented here. 

6. R A M I F I E D  D R O P L E T  G R O W T H  

In the growth of compact  droplets the incorporation of  monomers  takes 
place only on the surface of  the droplet. Each additional monomer 
contributes to the growth of  the droplet radius. For more ramified droplets 
with an effective dimension d+ not equal to d (the spatial dimension) 
additional monomers can contribute to either the growth of  the radius or the 
effective dimension of  the droplet. Moreover, the two processes can compete 
with each other for the available monomers  in the environment. 

In order to examine the effect of  this competition, we investigate a very 
simple set of  phenomenological equations which we believe retains the 
essential physics of  this competition. We will assume, as above, that the 
difference between the capture and reevaporation rate is proportional to an 
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effective surface. Generally for ramified clusters we would take the surface 
proportional to the volume. (1s'31) However, this would not account for the 
possible screening of the surface sites by neighboring sites. (32) This screening 
could result in an effective surface significantly smaller than the surface of 
the cluster. To account for this effect we will divide the ramified cluster with 
S spins into two parts. We imagine two concentric spheres centered at the 
center of mass of our cluster (see Fig. 12), which divides it into two zones. 

In the outer sphere we will denote the number of spins by Se and we 
assume that the spins in this zone are screened but not as much as in the 
interior. This reflects the fact that these spins far away from the center of 
mass of the cluster can be reached by monomers in the environment without 
significant "diffusion through the cluster." Since the actual cluster surface is 
proportional to the cluster volume, this leads to the equation 

dSe/dt = flS~ (6.1) 

where fl includes all proportionality factors and y < 1. 
In the interior zone the spins are more strongly screened and this leads 

to an equation of the form 

d S j d t  = aS~ (6.2) 

where x is a parameter larger than y and S t is the number of spins in the 
inner zone. The quantities S~' and Se y are measures of the effective surface 
available for incorporation of monomers. The value x = 1 corresponds to no 
screening. Clearly S = S t + S~. We also denote by S* and S* the values of 
S, and S E at time zero, i.e., when the nucleating droplet appears. 

The radius of gyration R of the cluster is defined by 

R 2 = ( l /S )  ~ r~ (6.3) 
i 

~ Ex fe r i o r  = oRdt-1 

I n f e r i o r  = bR dt 

Fig. 12. Ramified droplet divided into two zones. 
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where r t designates the distance of the ith spin from the center of mass of the 
droplet. We can then define an effective dimension d+ by R a+ = S and define 
d* to be its value at t = 0. The precise relationship between d+ and the 
fractal dimension ~33) is not clear, but the notion that d+ specifies the 
"compactness" of the cluster is sufficient for our present purpose. We now 
take S E = a R  e+-  I. The following points should be noted: 

(1) The definition of d+ will only make sense in the limit of large S. 
We will be restricted therefore to regions where S* ~> 1. 

(2) The region S~ is not well defined. Clearly there should be a 
smooth transition of degree of screening from the surface to the interior 
instead of a sharp boundary. In this work we take the unscreened region S e 

equal to R a + - I  for simplicity. Since we are presently attempting to 
qualitatively describe ramified droplet growth, this definition should be 
sufficiently precise for our purposes. 

(3) The constants 5, fl, and x will generally be functions of time; 
however, for simplicity we will take them to be constants with respect to 
time. These variables will, however, be functions of S*, S*, and d*.  This 
can only be a reasonable approximation for short times, so we will restrict 
ourselves to a linear theory. With the above considerations it is easy to 
obtain 

lnR = lnR* + a t (1  - y ) ( R * )  d ; ( l - y )  - - f i t / ( 1  - -  x ) ( R f f : )  ( d * ~ - l ) ( 1 - x )  (6.4) 

d+ = d* + t(ln R [a(1 - d*)/(1 - y )  + d*~/(1 - x)] (6.5) 

From Eqs. (7.4) and (7.5) we can distinguish three forms of growth 
depending on the values of x, 5, fl, S*, S*, and d* : 

a. d+ grows and R shrinks; 

b. R grows and d+ shrinks; 

c. both R and d+ grow. 

This is quite different from the growth of compact droplets where 
growth is defined by the increase in the droplet radius. 

Finally we can ask, within the limits of the linear theory, for the time t c 

at which d+ = d. At t c Eqs. (7.1) and (7.2) are valid and the growth takes 
place by the mechanism described earlier for compact droplet growth. From 
Eq. (7.5) we obtain 

t c =  [ l n R * ( d -  d* )  - C]{ [a(1  - d + * ) / ( 1  - y)  + d+f l / (1  - x ) ]  

-~- [5/(1 - y)(R ,)d~(1-y) _ /~(1  -- x)(R ,)(d~_-1)(l-x)] } -1 (6 .6 )  
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If d -  d+* is small, then t c ~ 1 and the droplet compactifies quickly. 
During this time R/R* is roughly constant. This would imply that in 
medium-range interaction systems, in that region of the metastable state 
where d+* = d, the droplet compactifies on a time scale small compared to 
the time necessary for appreciable droplet growth. This is an important 
consideration in any experimental search for ramified droplets. 

Although this model is crude, there is substantial evidence that the 
physical picture presented here is correct. Recent field theoretical studies of 
the early growth (34) produced results which are consistent with the 
conclusions reached here. Moreover, computer simulations ~35'36) confirm the 
fact that the nucleating droplets are ramified and that the initial phase of 
growth is one of compactification. 

7. SUMMARY 

We have shown that the classical nucleation theory works quite well for 
the nearest-neighbor Ising model for low temperatures over a wide range of 
nucleation rates, although deviations for small rates imply some curvature. 
At higher temperatures the deviation from the expected behavior is stronger. 
The assumption of a surface tension independent of the applied field and the 
radius seems reasonable for the temperatures studied. 

For Ising models with long-range interactions the classical nucleation 
theory was shown to break down in the vicinity of the mean-field spinodal. 
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APPENDIX A: NUMERICAL METHODS 

The Monte Carlo simulations of Section 3 were done for a simple cubic 
lattice Ising model with nearest-neighbor interactions. In order to check for 
finite size effects, systems of size 1683 and 1203 were used. Within the 
experimental error no such effects could be determined. Using Glauber 
kinetics, a spin was flipped with probability exp(-flAE), where AE is the 
energy connected with the flip and 1/fl--k~ T is the thermal energy. For 
negative AE the spin was always flipped. Multispin coding with four bits per 
spin was used in the calculations and was then compressed to one bit per 
spin for storage. 

We started with a configuration where all spins are down and then 
waited up to 20 Monte Carlo steps per spin for metastable equilibrium to be 
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established. Metastable equilibrium was created by an upward-oriented field 
h defined dimensionless through h = 2 (magnetic dipole moment) (magnetic 
field)/ksT. Configurations were then periodically frozen and analyzed 
according to the droplet model. To avoid errors from droplet-droplet 
interactions the simulations stopped if more than 5% of the "up" spins 
belonged to droplets. 

The simulations of Section 4 were carried out with a new algorithm. 
Here we briefly outline the basic idea of this algorithm. Instead of storing the 
spin orientation, one stores the sum ~i,.i)sisj. If during the Monte Carlo 
process the spin at the site i is flipped, then this sum is updated for the site i 
and for the q neighboring spins. 

APPENDIX B: TABLES OF THE MAGNETIZATION 
AND SUSCEPTIBILITY 

q = 32 q = 124 

h - m  xks  T h - m  xkB T 

0 0.975 0.0569 0 0.975 0.0535 
0.3 0.965 0.0838 0.3 0.965 0.0804 
0.6 0.948 O. 1357 0.95 0.920 0.2430 
0.7 0.941 0.1626 1.0 0.913 0.2719 
0.8 0.932 O. 1982 1.05 0.906 0.3047 
0.9 0.920 0.2653 1.1 0.898 0.3593 
0.95 0.913 0.3027 1.2 0.876 0.5304 
1.0 0.905 0.4315 1.225 0.869 0.5889 

1.25 0.862 0.6670 

The interaction was K = J / k  s T = (9/4)(1/q). 

q = 342 

h - m  2~ks T 

1.05 0.908 0.2867 
1.1 0.900 0.3427 
1.2 0.880 0.4616 
1.3 0.851 0.7849 
1.35 0.828 1.1815 
1.37 0.814 1.4207 
1.38 0.807 2.118 
1.40 0.773 - -  
1.41 0.767 - -  

822/36/3-4d2 
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